The Total Synthesis of (\pm) -Scopadulcic Acids A and B and (\pm) -Scopadulciol

Frederick E. Ziegler* and Owen B. Wallace

Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520-8107

Received February 8, 1995[®]

The total syntheses of (\pm) -scopadulcic acids A (1) and B (2a) and (\pm) -scopadulciol (2b) from the late, common intermediate 3 are described. The route provides a chemical correlation of the structures of the three natural products.

Introduction

In 1987 Hayashi et al. reported the isolation and characterization of scopadulcic acid A (SDA) (1) and scopadulcic acid B (SDB) (2a) from the Paraguayan medicinal plant "Typychá Kuratû" (Scoparia dulcis L., Scrophuraliaceae). The gross structure of SDA was determined by a combination of MS, UV, IR, and oneand two-dimensional NMR spectroscopy; the relative stereochemistry was revealed through NOE studies. The structure of SDB was assigned by comparison of its spectral data with that of SDA. The structure of SDA was later confirmed by single crystal X-ray crystallography of its methanol solvate.2 The absolute stereochemistry of SDA and SDB was assigned on the basis of a positive Cotton effect in their CD spectra. No chemical correlation between SDA and SDB was established.3

Scopadulciol (2b) was isolated from Scoparia dulcis indigenous to Taiwan.4 Its structure was assigned by comparison of its spectral data with that of SDB. In addition, scopadulciol and SDB were reduced with LiAlH₄ to the same triol. Bangladeshi S. dulcis has yielded dulcinol, a substance whose identity with scopadulciol has been suggested based on comparison of ¹H NMR spectra.6

Because S. dulcis had been used as a crude drug preparation for hypertension and stomach ailments in the aforementioned nations, Hayashi^{7,8} initiated studies to determine if the scopadulan diterpenes were responsible for the ameliorating effects of the crude preparation.

Scopadulcic acid B proved to be a powerful in vitro inhibitor of H+,K+-ATPase, the proton pump for gastric acid secretion.7 In addition, SDB was found to be an effective antiviral agent against herpes simplex virus type 1 (HSV-1).9 SDB was also shown to display antitumor activity in human cell lines¹⁰ and to inhibit the action of tumor-promoting phorbol esters.11

Two studies have addressed the synthesis of SDB as its enantiomer. Meyers¹² has employed his chiral oxazoline methodology to produce a tetracyclic model while investigators at Schering-Plough have explored the possible conversion of the resin acid, abietic acid, into SDB. 13

Overman was able to demonstrate that aryl iodides cyclize with dienes in the presence of a palladium catalyst to give the tetracyclic scopadulan ring system.¹⁴ This clever strategy was applied successfully to the synthesis of (±)-SDB wherein introduction of the functionality of ring A required the elaboration of an aromatic ring. 15 A subsequent report¹⁶ from the same laboratory detailed the total synthesis of (\pm) -SDA employing the palladium cyclization approach; however, ring A was formed via an intramolecular aldol condensation followed by subsequent functional group manipulation.

Our strategy for the synthesis of SDA and SDB was to produce racemic product such that the route would be amenable to the preparation of chiral, nonracemic product.¹⁷ Secondly, an advanced intermediate that serves as the precursor of both substances was considered an important goal. Because oxidation of the neopentyl

[®] Abstract published in Advance ACS Abstracts, June 1, 1995.

⁽¹⁾ Hayashi, T.; Kishi, M.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Suzuki, S.; Yoshizaki, M.; Morita, N.; Tezuka, Y.; Kikuchi, T.; Berganza, L. H.; Ferro, E.; Basualdo, I. *Tetrahedron Lett.* **1987**, *28*, 3693. (2) Hayashi, T.; Kishi, M.; Kawasaki, M.; Arisawa, M.; Morita, N.

J. Nat. Prod. 1988, 51, 360.

⁽³⁾ Numbering in the text follows the scopadulan nucleus. See structure 1.

⁽⁴⁾ Hayashi, T.; Asano, S.; Mizutani, M.; Takeguchi, N.; Kojima, T.;

⁽⁴⁾ Hayashi, I., Asaho, S., Mizutahi, M.; Takeguchi, N.; Rojima, I.; Okamura, K.; Morita, N. J. Nat. Prod. 1991, 54, 802.
(5) Ahmed, M.; Jakupovic, J. Phytochemistry 1990, 29, 3035.
(6) Hayashi, T.; Okamura, K.; Tamada, Y.; Iida, A.; Fujita, T.; Morita, N. Phytochemistry 1993, 32, 349.

⁽⁷⁾ Hayashi, T.; Okamura, K.; Kakemi, M.; Asano, S.; Mizutani, M.; Takeguchi, N.; Kawasaki, M.; Tezuka, Y.; Kikuchi, T.; Morita, N. Chem. Pharm. Bull. 1990, 38, 2740.

⁽⁸⁾ Asano, S.; Mizutani, M.; Hayashi, T.; Morita, N.; Takeguchi, N. J. Biol. Chem. 1990, 265, 22167.

⁽⁹⁾ Hayashi, K.; Niwayama, S.; Hayashi, T.; Nago, R.; Ochiai, H.; Morita, N. Antiviral Res. 1988, 9, 345.

⁽¹⁰⁾ Hayashi, K.; Hayashi, T.; Morita, N. Phytother. Res. 1992, 6,

⁽¹¹⁾ Nishino, H.; Hayashi, T.; Arisawa, M.; Satomi, Y.; Iwashima, A. Oncology 1993, 50, 100.

⁽¹²⁾ Robichaud, A. J.; Meyers, A. I. J. Org. Chem. 1991, 56, 2607.
(13) Tagat, J. R.; McCombie, S. W.; Ganguly, A. K.; Puar, M. S. Abstracts of Papers, 204th National Meeting of the American Chemical Society, Washington, DC, August 23–28, 1992; American Chemical Society: Washington, DC, 1992. ORGN 307.

(14) Abelman, M. M.; Overman, L. E. J. Am. Chem. Soc. 1988, 110,

⁽¹⁵⁾ Overman, L. E.; Ricca, D. J.; Tran, V. D. J. Am. Chem. Soc. 1993, 115, 2042.

⁽¹⁶⁾ Kucera, D. J.; O'Connor, S. J.; Overman, L. E. J. Org. Chem. 1993, 58, 5304.

⁽¹⁷⁾ Preliminary studies have provided diketone 3b (76% ee) by the procedure described for the asymmetric preparation of the Wieland-Miescher ketone (3a) using L-proline. A CD spectrum confirmed the same absolute configuration for both diketones, Buchschacher, P.; Fürst, A.; Gutzwiller, J. Organic Syntheses; Freeman, J. P., Ed.; Wiley: New York, 1990; Coll. Vol. 7; p 368.

hydroxyl of scopadulciol (2b) would lead to SDB (2a), a synthetic scheme passing through scopadulciol was developed.

Results

The known¹⁸ diketone **3b**, which was prepared by Robinson annulation of 2-allyl-1,3-cyclohexanedione¹⁹ with methyl vinyl ketone (MVK), was chosen as the precursor to rings B and C. The allyl residue would conveniently serve as the carbon source of ring D. The yield of diketone **3b** (77%) was improved by \sim 50% by modification of the literature conditions.²⁰ The saturated carbonyl of 3b required protection to permit methylation at the enone methylene group. While the Wieland-Miescher ketone 3a can be ketalized selectively at the saturated carbonyl,21 efforts to effect this transformation with diketone 3b were unsuccessful. The increased steric hindrance created by the allyl group in 3b was responsible for the lack of selectivity. Consequently, the Boyce-Whitehurst protocol (NaBH₄)²² for the selective reduction of the Wieland-Miescher ketone 3a was applied to dione 3b to afford stereoselectively the equatorial alcohol 4a. Subsequent protection of the hydroxyl group as its methoxymethyl derivative (MOM) achieved the goal that was unattainable through selective ketalization.

Incorporation of the future C_{17} methyl group of the diterpenes into the bicyclic nucleus was achieved by kinetic deprotonation¹8 of enone 4b with LDA at −78 °C followed by alkylation with methyl iodide at -20 °C. Flash chromatography removed unreacted enone 4b and provided a chromatographically inseparable mixture of monomethylated enones 5a and 5b (~5.7:1; 85% yield) that was contaminated with $\sim\!2\%$ of a dimethylated enone. The major, equatorially methylated diastereomer 5a was obtained pure by recrystallization at the expense of yield. The separation proved unnecessary because subsequent over-reduction of the enones with Li bronze/ MeOH²³ led to chromatographically separable alcohols 9 and 11, which were readily freed of dimethylated alcohol.

The stereochemical assignments of 5a and 5b were based upon subsequent chemical transformations and the assumption that the enolate was methylated distal to the allyl and MOM ether substituents. The option of a more convergent approach, i.e., annulation of 2-allyl-1,3-cyclohexanedione with methyl isopropenyl ketone, was attempted under basic, protic conditions and under acid catalysis;²⁴ the yield of **5a,b** was, at best, a meager 10%.

Initial studies on the reduction of the enone mixture 5a,b were conducted with Li bronze/tert-BuOH,23 a procedure that led to a mixture of saturated ketones in approximately the same ratio as was present in the enones themselves. Our initial assumption was that the saturated ketones were both trans-fused diastereomers, 5a leading to equatorial methyl isomer 6a, and 5b providing its axial epimer **6b**. This hypothesis quickly became suspect when the mixture failed to undergo equilibration.²⁵ Because the \sim 6:1 mixture may already have been at equilibrium, the major saturated ketone 6a was subjected to equilibration conditions (CD₃ONa/CD₃-OD); no change in the ¹H NMR spectrum occurred other than deuterium incorporation. Thus, both major and minor components of the mixture were presumed to be thermodynamically stable, bearing equatorial methyl groups, and that the stereochemical difference lay in the ring fusions. Thus, the stereochemistry of the major component was satisfied by the stereochemistry present in structure 6a while the structure of the minor component was reassigned as cis-fused isomer 7. This hypothesis would receive confirmation in later transformations.

Although hexahydronaphthalen-2(3H)-ones give transfused products upon metal/NH3 reduction26 as the rule rather than the exception, an appropriately positioned substituent can produce a cis-fused product.27 Addition of an electron to the major enone 5a (Scheme 1) produces radical anion 8, which can exist in the cisoid (8c) or the transoid (8t) conformation, both of which maintain orbital overlap.²⁸ The pseudoaxial methyl group in 8c suffers a 1,3-diaxial interaction with ring B thereby favoring conformation 8t for protonation at the ring junction. Further protonation of the enolate and reduction affords the single alcohol 9, which was presumed to have an equatorial hydroxyl group.^{29,30} On the other hand, the radical anion 10, derived from the minor enone 5b, disfavors conformation 10t because of the 1,3-allyl/Me interaction. Consequently, the cisoid conformation 10c undergoes protonation and reduction to form 11. Thus, the methyl group dictates the stereochemical course of the reduction.

Our first attempt at the construction of the eventual D-ring focused upon an aldol strategy. Ketone 6a, obtained at the time via the Li bronze/tert-BuOH procedure, was subjected to ozonolysis in MeOH followed by reductive workup with dimethyl sulfide in the presence of sodium carbonate. These conditions were sufficient to produce a β -hydroxy ketone **12a** of undefined stereochemistry at the hydroxyl center. That the aldol con-

⁽¹⁸⁾ Reusch, W.; Grimm, K.; Karoglan, J. E.; Martin, J.; Subrahamanian, K. P.; Toong, Y.; Venkataramani, P. S.; Yordy, J. D.; Zoutendam, P. J. Am. Chem. Soc. 1977, 99, 1953.
(19) Stetter, H.; Dierichs, W. Chem. Ber. 1952, 85, 1061.

⁽²⁰⁾ MVK was added dropwise over 4 h at room temperature. An added precaution was to wrap the flask in Al foil.

⁽²¹⁾ Corey, E. J.; Ohno, M.; Mitra, R. B.; Vatakencherry, P. A. J.

Am. Chem. Soc. 1964, 86, 478.

(22) Boyce, C. B. C.; Whitehurst, J. S. J. Chem. Soc. 1960, 2680.

(23) Mueller, R. H.; Gillick, J. G. J. Org. Chem. 1978, 43, 4647.

⁽²⁴⁾ Heathcock, C. H.; Ellis, J. E.; McMurry, J. E.; Coppolino, A. Tetrahedron Lett. 1971, 4995.

⁽²⁵⁾ This experiment was conducted on the THP ether derivatives. (26) For a review on the reduction of α,β -unsaturated compounds with metals in liquid ammonia, see Caine, D. Organic Reactions; Dauben, W. G., Ed.; Wiley: New York, 1976; 23; pp 1. (27) Piers, E.; Phillips-Johnson, W. M.; Berger, C. Tetrahedron Lett.

^{1972, 2915.}

⁽²⁸⁾ Stork, G.; Darling, S. D. J. Am. Chem. Soc. 1964, 86, 1761. (29) Chetty, G. l.; Krishna Rao, G. S.; Dev, S.; Banerjee, D. K. Tetrahedron 1966, 22, 2311.

⁽³⁰⁾ Huffman, J. W.; Charles, J. T. J. Am. Chem. Soc. 1968, 90, 6486.

Scheme 1

densation occurred at the methine center was apparent from the presence of a methyl singlet at δ 1.14 in the 1H NMR spectrum. The aldol product failed to react with the Burgess reagent 31 in an effort to effect dehydration. Moreover, attempts to convert the hydroxyl group to a halide (PCl $_3$, pyr; PBr $_3$, pyr; POCl $_3$, pyr; SOCl $_2$, pyr) were uniformly unsuccessful. Eventually, mesylate 12b was formed upon exposure of ketol 12a to excess MeSO $_2$ Cl (7 equiv) and Et $_3$ N (10 equiv) for 12 h at room temperature. 32 The mesylate failed to undergo elimination (DBU, toluene, reflux; tert-BuOK, DMSO, 90 °C).

The keto alcohol 12a also proved inert to NaH (THF, 0 °C) in spite of the concern for retroaldolization. Fortunately, treatment of the substance with LDA under the same conditions of solvent and temperature followed by successive quenching with CS₂ and MeI gave rise to xanthate 12c albeit in less than $\sim 40\%$ yield. Reduction of the xanthate with $n\text{-Bu}_3\text{SnH}$ in refluxing benzene³³ afforded an intractable mixture. Although the desired tricyclic product could be detected by GC/MS and its presence inferred by ¹H NMR when an eventually efficient preparation of ketone 13 was achieved, the aldol route was abandoned in favor of an alternative strategy.

Ozonolysis of unsaturated alcohol **9** followed by reductive workup with NaBH₄ provided diol **14a** without incident (Scheme 2). Selective oxidation of the secondary alcohol was achieved by the method of Stevens (NaOCl/ HOAc; 85%).³⁴ Formation of mesylate **14c** from keto alcohol **14b** was straightforward although the chemistry of the mesylate would prove to be more complex.

Intramolecular alkylation of keto mesylate 14c in the presence of MeONa/MeOH afforded an $\sim 10:1$ mixture (83%) of tricyclic ketones 13 and 17, respectively, in

Scheme 2

addition to 8% of tetrahydrofuran 16. Ketone 13 could be isolated by crystallization of the mixture. The minor ketone 17 was identified by GC/MS and by a doublet at δ 1.02 in a ¹H NMR spectrum of a chromatographed mixture that contained ketone 13. The tetrahydro-

furan 16, which arises from intramolecular displacement of the mesylate group by the MOM ether, is formed in MeOH in the absence of base and in THF more slowly. This reactivity required the immediate use of the keto mesylate after its preparation. The ratio of ketones 13: 17 was a function of the base system employed. The ratio decreased with increased base strength and poorer solvating properties of the alcohol: EtONa/EtOH (61:39), tert-BuOK/tert-BuOH (34:66). An interpretation of these results argues that the bulkier the base, the greater the tendency to deprotonate the methylene site rather than the methine position. Alkylation at the methylene site competes favorably with enolate equilibration. In the case of MeONa/MeOH, equilibration may

⁽³¹⁾ Burgess, E. M.; Penton, H. R.; Taylor, E. A. J. Am. Chem. Soc. 1970, 92, 5224.

 ⁽³²⁾ Crossland, R. K.; Servis, K. L. J. Org. Chem. 1970, 35, 3195.
 (33) Barton, D. H. R.; Crich, D.; Motherwell, W. B. Tetrahedron 1985, 41, 3901.

⁽³⁴⁾ Stevens, R. V.; Chapman, K. T.; Stubbs, C. A.; Tam, W. W.; Albizati, K. F. Tetrahedron Lett. 1982, 23, 4647.

be more rapid than alkylation and/or the less hindered base may deprotonate more effectively at the methine site.

The cis-fused alcohol 11 was converted into keto mesylate 15c (Scheme 2) using the same sequence of reactions employed for the trans isomer. Treatment of the keto mesylate with MeONa/MeOH gave tricyclic ketone 20 (67%) and tetrahydrofuran 18 (20%). The ketone arising from the undesired mode of alkylation—namely, 19—was not detected. The higher yield of tetrahydrofuran 18 produced in the cis series relative to tetrahydrofuran 16 in the trans series (8%) is real; it is not an artifact of reaction prior to exposure to base. The rate of formation of tetrahydrofuran 18 is relatively unaffected by the conformational flexibility of the cisdecalone ring system (21a \rightleftharpoons 21b) while the rate of C-alkylation is dependent on access to the conformation

21b. In addition, the nonidentity of ketones 13 and 20 and the inability to interconvert tetrahydrofurans 16 and 18 in the presence of base confirmed the earlier stereochemical ring junction assignments.

With the foregoing stereochemical issues resolved, construction of ring A was explored. Simultaneous protection of the ketone function of 13 and liberation of the protected alcohol was achieved by ketalization with ethylene glycol in the presence of acid (Scheme 3). The resultant alcohol 22a, whose structure was confirmed by single crystal X-ray analysis, 35 was readily oxidized with pyridinium chlorochromate (PCC/NaOAc)36 to afford ketone **22b**. Although formation of α,β -unsaturated ketone **23** could be achieved by selenenylation methods^{37–39} from ketone **22b** (LDA; PhSeBr; O_3 ; Δ) in 76% yield, an operationally simpler strategy was used. The TMS enol ether of ketone 22b, which proved to be quite stable to aqueous workup, was prepared (LDA; TMSCl) and oxidized with stoichiometric Pd(OAc)₂ in CH₃CN. Although the oxidation was sluggish, the desired product was obtained in 90% yield. 40 Efforts to employ catalytic Pd-(OAc)₂ in the presence of stoichiometric oxidants were unrewarding.41

1,2-Addition of 4-pentenyllithium (24a)⁴² to enone 23 followed by Dauben-Michno oxidative rearrangement⁴³ provided the transposed enone 25a. Contrary to Overman's observation in his synthesis of SDA that Me₂CuLi

Scheme 3

was able to undergo 1,4-addition to enone 26, the use of Me₂CuLi, Me₂CuCNLi₂/BF₃·Et₂O,⁴⁴ or Me₃Al/Ni(acac)₂⁴⁵ gave either 1,2-addition products or recovered enone. Consequently, Overman's method of choice, the Luche protocol (Me₂Zn, Ni(acac)₂, LiBr),⁴⁶ was investigated. Although this reagent proved to be reactive toward enone 26 in the Overman study when Et₂O was used as a

solvent, to our dismay only an intractable mixture was obtained containing no 1,4-adduct. The use of THF as a solvent afforded only the product of 1,2-addition. The marked difference in regioselectivity of two structurally related enones led us to spectulate that the nickel reagent was coordinating with the monosubstituted olefin in enone **25a**, thereby affecting the course of the reaction. The presence of alkyl substituents on the double bond was considered likely to suppress complexation⁴⁷ while their location would have to be at the terminus of the chain to assure that a subsequent ozonolysis would afford an aldehyde. To test this hypothesis, enone 25b was prepared from enone 23 with 5-methyl-4-hexenyllithium (24b), which was prepared by transmetalation^{48,49} of the iodide.⁵⁰ Rewardingly, the Luche procedure performed admirably providing ketone **27** *via* axial addition of the methyl group from the less congested β -face of the enone (Scheme 4).

Ozonolysis of unsaturated ketone 27 afforded keto aldehyde 28, which when exposed to KOH in aqueous MeOH at room temperature, gave, in addition to baseline material (TLC), a new substance that was presumed to

⁽³⁵⁾ The authors have deposited atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK

⁽³⁶⁾ Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.

⁽³⁷⁾ Reich, H. J.; Reich, I. L.; Renga, J. M. J. Am. Chem. Soc. 1973, 95, 5813.

⁽³⁸⁾ Sharpless, K. B.; Lauer, R. F.; Teranishi, R. Y. J. Am. Chem. Soc. 1973, 95, 6137.

⁽³⁹⁾ Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434.

⁽⁴⁰⁾ Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011. (41) Minami, I.; Takahashi, K.; Shimizu, I.; Kimura, T.; Tsuji, J. Tetrahedron 1986, 42, 2971.

⁽⁴²⁾ Ratcliffe, A. J.; Sainsbury, M.; Smith, A. D.; Scopes, D. I. C. J. Chem. Soc., Perkin Trans. 1 1988, 2933.

⁽⁴³⁾ Dauben, W. G.; Michno, D. M. J. Org. Chem. 1977, 42, 682.

⁽⁴⁴⁾ Lipshutz, B. H.; Parker, D. A.; Kozlowski, J. A.; Nguyen, S. L. Tetrahedron Lett. 1984, 25, 5959.

 ⁽⁴⁵⁾ Ashby, E. C.; Heinsohn, G. J. Org. Chem. 1974, 39, 3297.
 (46) Petrier, C.; de Souza Barbosa, J. C.; Dupuy, C.; Luche, J.-L. J. Org. Chem. 1985, 50, 5761.

⁽⁴⁷⁾ Conjugate addition under Luche conditions was successful with the 4-methyl-4-pentenyl and (E)-4-methyl-4-hexenyl side chain analogs of enone **25a**.

⁽⁴⁸⁾ Bailey, W. F.; Punzalan, E. R. J. Org. Chem. 1990, 55, 5404.
(49) Negishi, E.; Swanson, D. R.; Rousset, C. J. J. Org. Chem. 1990, 55, 5406.

28

Scheme 4

be a tetracyclic aldol product. When the reaction mixture was heated at reflux, a new less polar, UV-active spot appeared on TLC. This substance proved to be the desired enone 29, albeit isolated in less than 30% yield. Acid-catalyzed cyclodehydration (p-TsOH, benzene, reflux) of keto aldehyde 28 was efficient but the formation of enone 29 was accompanied by its deprotected diketone, a product that would not lend itself to an expeditious completion of the syntheses.

29

Reconsidering the base-catalyzed cyclization, we suspected that at room temperature bimolecular condensations (base line material) were competing with cyclization and that elimination of water from the desired aldol was slow. The solution to the former problem was to decrease the concentration of the substrate while the solution to the latter problem was to increase the rate of dehydration. Consequently, when a solution of the keto aldehyde was added slowly to a refluxing solution of KOH in aqueous MeOH, enone 29 was isolated in 80% yield!

Introduction of the remaining carbons at C₄ and manipulation of the functionality at this site were the remaining operations to be accomplished. Coppercatalyzed 1,4-addition of vinylmagnesium bromide⁵¹ to enone 29 gave rise to the single, saturated ketone 30 (Scheme 5). At this juncture the stereochemistry of this substance could not be ascertained although exposure of the adduct to CD₃ONa/CD₃OD incorporated three atoms of deuterium adjacent to the carbonyl. Apart from the deuterium incorporation, the ¹H NMR spectrum was unaltered indicating that the more stable C5 epimer had been formed. Molecular mechanics calculations performed on the two C5 epimers of ketone 30 showed an energy difference of ~0.6 kcal/mol, a value that predicts a mixture upon equilibration. Calculations on the C4 epimers were ignored because the α -face addition of the cuprate to enone 29 was considered unlikely. Moreover, Overman¹⁶ in his work observed β -face addition of cyanide under similar circumstances.

Reduction of ketone 30 with DIBALH gave a mixture (>3:1) of alcohols wherein the desired axial isomer predominated over the equatorial isomer 31c.52 Benzoylation of axial alcohol 31a was sluggish at room temperature; benzoyl bromide in refluxing pyridine was required. ¹H NMR spectroscopy did not prove useful in

31a,
$$R_1 = OH$$
, $R_2 = H$
b, $R_1 = COPh$, $R_2 = H$
c, $R_1 = H$, $R_2 = OH$

32a, R₁ = CHO, R₂ = H Na₂CO₃ b, R₁ = H, R₂ = CHO Na₂CO₃ c, R₁ = CHO, R₂ = CH₂OH CH₂O

assessing the C₆ stereochemistry in either the alcohols or the benzoate. In the alcohols the methine hydrogen were masked by the ketal signal while the benzoate methine appeared as a narrow, apparent doublet (J =2.2 Hz). While this signal was not meaningful for the interpretation of stereochemistry, it was the pattern present in the natural products.

Ozonolysis of benzoate 31b in CH₂Cl₂/MeOH in the presence of Na₂CO₃ led to a mixture of aldehydes **32a.b**. Prolonged exposure to the buffered conditions produced only the more stable aldehyde 32b. Deuteration (NaH- CO_3 , $CD_3OD/CDCl_3$) provided the d_1 -aldehyde, whose aldehyde proton in its ¹H NMR spectrum collapsed from a doublet to a singlet. Had the AB-ring juncture of these two aldehydes been cis, then the kinetic and thermodynamic aldehydes would have been the same equatorial aldehyde. This observation coupled with the successful syntheses demonstrated that aldehyde 32b was the more stable equatorial isomer and that the AB-ring juncture was indeed trans.

After several failed attempts to introduce the remaining carbon of the diterpene skeleton using the kinetic enolate of aldehyde 32b and formaldehyde equivalents, e.g., (benzyloxy)methyl chloride (BOMCl), a more classical approach prevailed. Exposure of aldehyde 32b to formalin in the presence of aqueous base produced the single β -hydroxy aldehyde **32c**, the product of equatorial electrophilic addition. In practice, formalin was added to the crude reaction mixture subsequent to ozonolysis to afford the aldol in 80% yield.

⁽⁵⁰⁾ Snider, B. B.; Allentoff, A. J.; Walner, M. B. Tetrahedron 1990, 46, 8031

⁽⁵¹⁾ Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 4025.

⁽⁵²⁾ Ziegler, F. E.; Jaynes, B. H.; Saindane, M. T. Tetrahedron Lett.

Scheme 6

33a,
$$R_1$$
 = CH0, R_2 = CH₂OMOM NaBH₄
b, R_1 = CH₂OH, R_2 = CH₂OMOM CS₂, MeI
c, R_1 = CH₂OCS₂Me, R_2 = CH₂OMOM CS₂, MeI

Selective oxidation of the aldehyde group of **32c** with NaClO₂,^{53,54} and subsequent ketal hydrolysis provided scopadulcic acid A (1), whose ¹H and ¹³C NMR spectra were identical to literature values and spectra of the natural product provided by Professor Hayashi.

Formation of SDB required inversion of the oxidation levels of C_{18} and C_{19} of aldol **32c**. This end was readily achieved (Scheme 6) by protection of the hydroxyl group and conversion of the aldehyde to a methyl group by n-Bu₃SnH reduction of the xanthate ester 33c.³³ This route produced the first synthesis of scopadulciol (2b), whose high field ¹H NMR spectrum was identical to a spectrum provided by Professor Hayashi and whose 13C NMR spectrum agreed with reported values. 4,55 Jones oxidation⁵⁶ of scopadulciol readily afforded scopadulcic acid B (2a), which was identical to a sample of natural material by comparison of ¹H NMR spectra; the ¹³C NMR spectrum was in accord with literature values. 4,7 The use of the common intermediate, aldol 32c, confirmed by chemical synthesis the structures of the three natural products, which had been previously interrelated by NMR studies.

Experimental Section

Unless otherwise stated, all reactions were carried out in flame-dried glassware, under a N₂ atmosphere. Ether (Et₂O) and tetrahydrofuran (THF) were distilled from sodium benzophenone ketyl under N₂. Methylene chloride (CH₂Cl₂), benzene (PhH), diisopropylamine (i-Pr2NEt), hexanes, pyridine, and triethylamine (Et₃N) were distilled from CaH₂. Other solvents (ACS photometric grade) were used without further purification. Commercially available reagents were used as received. Alkyllithiums were titrated by the method of Lipton. 57 Workup means drying over Na_2SO_4 (unless stated otherwise), filtration, and concentration in vacuo. Flash chromatography was conducted by the method of Still.⁵⁸ Melting points are uncorrected. Infrared spectra (IR) were recorded in CHCl3. Gas chromatography (GC) and GC/MS were conducted with a 0.25 μ m film SE-30 column. Low resolution mass spectra (LRMS) were run at 70 eV or 20 eV (EI). High resolution mass spectra were recorded at the University of Illinois, Urbana-Champaign. ¹H NMR spectra were recorded at 300 MHz (CDCl₃, & 7.26); ¹³C NMR spectra were recorded at 75 MHz (CDCl₃, 77.00 ppm) unless otherwise

(53) Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. 1973, 27, 888.
(54) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.

(56) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39.

noted. Elemental analyses were conducted by Atlantic Microlabs, Inc., Atlanta, GA.

 (\pm) -(4aR*,5S*)-4,4a,5,6,7,8-Hexahydro-5-hydroxy-4a-(2propenyl)naphthalen-2(3H)-one (4a). To a stirred solution of diketone **3b** (61.2 g, 0.3 mol) in 600 mL of EtOH/THF (5:1) at 0 °C was added a solution of NaBH₄ (3.4 g, 0.089 mol in 500 mL of EtOH/THF (5:1)) dropwise over 8 h. Acetic acid (10 mL) was added, and the solvent was removed in vacuo. The resulting semisolid mass was dissolved in CHCl3 and washed with water, saturated NaHCO3, and brine. Workup gave a dark red oil (60.5 g, 98%) which solidified on refrigeration for 12 h. The solid was sufficiently pure for the subsequent reaction. A recrystallized sample gave keto alcohol 4a as a white solid: mp 71.5-72.5 °C (Et₂O/hexanes). IR: 3425, 1662, 1620 cm⁻¹. ${}^{1}\dot{H}$ NMR: δ 5.84 (s, 1H), 5.72–5.86 (m, 1H), 5.11 (d, J = 16.9 Hz, 1H), 5.01 (d, J = 9.9 Hz, 1H), 3.52 (dd, J = 9.9 Hz, 1H)J = 11.0, 4.9 Hz, 1H, 2.63 (br s, 1H), 2.40 - 2.60 (m, 3H), 2.25 -2.40 (m, 3H), 2.14-2.21 (m, 1H), 1.70-2.00 (m, 4H), 1.38 (qt, J = 13.1, 4.6 Hz, 1H). ¹³C NMR: 200.13, 167.28, 134.55, 126.33, 117.70, 77.62, 44.95, 35.80, 34.05, 32.28, 30.92, 29.94, 23.90. Anal. Calcd for $C_{13}H_{18}O_2$: C, 75.69; H, 8.80. Found: C, 75.72; H, 8.84.

 (\pm) -(4aR*,5S*)-4,4a,5,6,7,8-Hexahydro-5-[(methoxymethyl)oxyl-4a-(2-propenyl)naphthalen-2(3H)-one (4b). To a stirred solution of keto alcohol 4a (8.24 g, 40 mmol) and i-Pr₂NEt (17.5 mL, 100 mmol) in 170 mL of CH₂Cl₂ at room temperature was added (chloromethyl)methyl ether (MOMCl, 5 mL, 66 mmol) dropwise over 4 h. After stirring the reaction mixture for 12 h an additional 1.1 mL of MOMCl (13 mmol) was added. Stirring was continued for 12 h. Excess NH₄OH was added, and the reaction mixture was diluted with CH2-Cl₂ and washed with water, ice-cold 5% HCl, water, and brine. Workup and flash chromatography (0-10% EtOAc/hexanes) yielded 7.60 g (76%) of a pale yellow oil that solidified on refrigeration. Recrystallization afforded acetal 4b as a colorless solid: mp 39.5-40 °C (Et₂O/hexanes). IR: 1662, 1620 cm⁻¹. 1 H NMR: δ 5.75 (s, 1H), 5.62–5.75 (m, 1H), 5.01 (d, J= 16.8 Hz, 1H, 4.91 (d, J = 10.0 Hz, 1H), 4.62 (d, J = 6.9 Hz,1H), 4.49 (d, J = 6.9 Hz, 1H), 3.32 (dd, J = 11.6, 4.7 Hz, 1H), $3.27~(s,\,3H),\,2.32-2.52~(m,\,3H),\,2.06-2.29~(m,\,4H),\,1.76-1.93$ (m, 3H), 1.63 (qd, J = 12.4, 4.0 Hz, 1H), 1.26 (qt, J = 13.3, 4.3)Hz, 1H). ¹³C NMR: 199.01, 165.63, 134.55, 126.33, 117.28, 95.50, 83.09, 55.40, 44.28, 36.41, 33.98, 32.14, 31.10, 26.84, 23.61. Anal. Calcd for $C_{15}H_{22}O_3$: C, 71.97; H, 8.86. Found: C, 71.83; H, 8.85.

 (\pm) -(3R*,4aS*,5S*)-4,4a,5,6,7,8-Hexahydro-5-[(methoxymethyl)oxy]-3-methyl-4a-(2-propenyl)naphthalen-**2(3H)-one (5a).** LDA was prepared by adding n-BuLi (16.2) mL, 1.31 M, 21 mmol) dropwise to a stirred solution of i-Pr₂-NH (3.15 mL, 22.5 mmol) in 30 mL of THF at 0 °C. The solution was cooled to -78 °C, and a solution of enone 4b (3.73 g, 15 mmol) in 25 mL of THF was added dropwise over 10 min. After stirring the mixture for an additional 15 min, MeI (1.9 mL, 30 mmol) was added in one portion and stirring was continued for 12 h at -20 °C. Saturated NaHCO₃ (2 mL) was added and the solvent was removed. The residue was dissolved in CH2Cl2 and washed with ice-cold 5% HCl, saturated NaHCO3, water, and brine. Workup gave a yellow semisolid that was purified by flash chromatography (0-20% EtOAc/ hexanes), yielding 0.34 g of unreacted starting material and 3.35 g (85% yield) of an inseparable, solid mixture, which was analyzed by GC/MS and found to be a mixture (\sim 5.7:1) of monomethylated diastereomers. The product was also contaminated by ~2% of a dimethylated product. Recrystallization gave the major diastereomer 5a as white crystals: mp 49-50 °C (Et₂O/hexanes). IR: 1667, 1626 cm⁻¹. ¹H NMR: δ 5.84-5.96 (m, 1H), 5.83 (s, 1H), 5.12 (br d, J = 16.9 Hz, 1H), $5.00 \text{ (br d, } J = 9.7 \text{ Hz, } 1\text{H}), 4.72 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{H}), 4.60 \text{ (d, } J = 6.9 \text{ Hz, } 1\text{Hz, } 1\text{Hz,$ J = 6.9 Hz, 1H), 3.38 (s, 3H), 3.27 (dd, J = 11.7, 4.4 Hz, 1H),2.49-2.67 (m, 3H), 2.40 (dd, J = 13.7, 5.3 Hz, 1H), 2.15-2.35(m, 2H), 1.86-2.00 (m, 2H), 1.72 (qd, J = 12.4, 3.8 Hz, 1H),1.56 (t, J = 14.0 Hz, 1H), 1.37 (qt, J = 13.1, 4.2 Hz, 1H), 1.06 (d, J = 6.6 Hz, 3H). ¹³C NMR: 201.28, 164.26, 135.53, 126.13, 116.78, 95.91, 86.08, 55.52, 45.07, 42.71, 37.47, 36.79, 31.94, 27.18, 23.19, 14.79. Anal. Calcd for C₁₆H₂₄O₃: C, 72.69; H, 9.15. Found: C, 72.68; H, 9.16.

⁽⁵⁵⁾ Comparison of a low field ¹H NMR spectrum of dulcinol with a high field spectrum of scopadulciol showed apparent agreement.

⁽⁵⁷⁾ Lipton, M. F.; Sorensen, C. M.; Sadler, A. C.; Shapiro, R. H. J. Organomet. Chem. 1980, 186, 155.
(58) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

 (\pm) -(3R*,4aS*,5S*,8aS*)-5-[(Methoxymethyl)oxy]-3-methyl-1,4,4a,5,6,7,8,8a-octahydro-4a-(2-propenyl)naphthalen-2(3H)-one (6a). To a three-necked flask fitted with a dry ice condenser was added freshly cut and washed (hexanes) Li wire (300 mg, 43 mmol). The flask was cooled to -78 °C and enough anhydrous NH₃ was condensed to dissolve the lithium.²³ After adding THF (20 mL), a solution of enones 5a,b (GC, 4.5: 1; 2.64 g, 10 mmol) and tert-BuOH (3.8 mL, 40 mmol) in THF (20 mL) was then added dropwise to the Li bronze with stirring. The mixture was stirred for an additional 20 min. Solid NH₄Cl was added to destroy excess Li, and the NH₃ was allowed to evaporate at room temperature under a stream of N₂. The THF was removed, and the resulting white residue was diluted with CH2Cl2 and water. The organic phase was washed with water and brine. Workup and flash chromatography (0-10% EtOAc/hexanes) gave 2.21 g (83%) of ketones 6a and 7 (4.5:1) as a white solid. Recrystallization of a sample gave white crystals of ketone 6a: mp 63-64 °C (Et₂O/hexanes). IR: 1703, 1636 cm⁻¹. ¹H NMR: δ 6.23 (dtd, J = 17.2, 10.1, 4.3 Hz, 1H, 4.91-5.01 (m, 2H), 4.62 (d, J = 6.8 Hz, 1H), 4.50(d, J = 6.8 Hz, 1H), 3.29 (s, 3H), 3.15 (dd, J = 11.4, 4.4 Hz,1H), 2.58 (br d, J = 14.7 Hz, 1H), 2.16-2.44 (m, 4H), 2.09 (dd, J = 14.4, 4.0 Hz, 1H, 1.49 - 1.87 (m, 4H), 1.13 - 1.32 (m, 3H),0.90-1.01 (m, 1H), 0.89 (d, J = 6.1 Hz, 3H). ¹³C NMR: 212.28, 137.10, 115.43, 95.50, 85.78, 55.32, 46.23, 43.66, 43.35, 40.70, 40.31, 30.69, 27.03, 26.96, 24.11, 14.27. Anal. Calcd for C₁₆H₂₆O₃: C, 72.14; H, 9.84. Found: C, 72.01; H, 9.88.

 $(\pm) \cdot (4S^*, 4aR^*, 7R^*, 9aS^*) - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 7R^*, 9aS^*)] - 6 - Hydroxy - 4 - [(meth - 4S^*, 4aR^*, 4a$ $oxymethyl) oxy] \hbox{-}7-methyl-1,4,4a,5,6,7,9,9a-octahydro-[4a,7]$ methano-[4aH]benzocyclohepten-8(5H)-one (12a). Ozone was passed through a solution of ketone **6a** (1.60 g, 6 mmol) and Na₂CO₃ (150 mg, 1.4 mmol) in 30 mL of MeOH at -78 °C until a blue color persisted. The flask was purged with N2 for 10 min before the addition of dimethyl sulfide (4.43 mL, 60 mmol). After stirring the reaction mixture at -78 °C for 30 min, it was allowed to warm to room temperature for 12 h. The solvent was removed, and the resulting white solid was dissolved in CH₂Cl₂ and washed with water. Workup and flash chromatography (0-50% EtOAc/hexanes) gave 1.02 g of ketol 12a (63% yield) and 0.48 g of an inseparable mixture that presumably contained other cyclization isomers. A sample of 12a was recrystallized affording white crystals: mp 110-111 °C (Et₂O/hexanes). IR: 3454, 1703 cm $^{-1}$. ¹H NMR: δ 4.77 (d, J = 6.9 Hz, 1H), 4.60 (d, J = 6.9 Hz, 1H), 4.15 (dd, J = 6.9 Hz, 1H)10.7, 4.7 Hz, 1H), 3.38 (s, 3H), 3.28 (dd, J = 11.0, 4.0 Hz, 1H),2.15-2.51 (m, 4H), 1.94 (br d, J = 8.9 Hz, 1H), 1.60-1.79 (m, 4H), 1.46 (br d, J = 7 Hz, 1H), 1.17-1.37 (m, 4H), 1.14 (s, 3H). ¹³C: 211.42, 95.42, 79.68, 79.14, 57.43, 55.27, 47.16, 45.32, 44.23, 43.52, 31.73, 29.09, 28.77, 23.53, 17.68. Anal. Calcd for C₁₅H₂₄O₄: C, 67.14; H, 9.01. Found: C, 67.14; H,

 (\pm) -(2R*,3R*,4aS*,5S*,8aS*)-1,2,3,4,4a,5,6,7,8,8a-Decahydro-5-[(methoxymethyl)oxy]-3-methyl-4a-(2-propenyl)naphthalen-2-ol (9) and (\pm)-(2S*,3S*,4aS*,5S*,8aR*)-1,2,3,4,4a,5,6,7,8,8a-Decahydro-5-[(methoxymethyl)oxy]-3-methyl-4a-(2-propenyl)naphthalen-2-ol (11). Li bronze²³ was prepared from Li wire (3.86 g, 0.55 mol) (vide supra). THF (130 mL) was added to the stirred mixture followed by the dropwise addition over 30 min of a solution of enones 5a,b (5.7:1; 18.2 g, 0.07 mol) and MeOH (16.7 mL, 0.41 mol) in 100 mL of THF. The reaction mixture was stirred at -78 °C for 4 Excess Li bronze was destroyed by the addition of MeOH (10 mL). The dry ice/acetone bath was removed, and the excess NH₃ was allowed to evaporate in a stream of N₂. The reaction mixture was concentrated and diluted with CH2Cl2 and water. The organic phase was washed with water and brine. Workup and flash chromatography (0-30% EtOAc/ hexanes) gave 14.4 g (78%) of alcohol 9, which solidified on prolonged refrigeration to give a white, waxy solid. Recrystallization gave pure material: mp 54-56 °C (Et₂O/hexanes). IR: 3618, 3464, 1634 cm⁻¹. ¹H NMR: δ 6.14 (dtd, J = 17.1, 10.1, 4.6 Hz, 1H), 4.91-5.00 (m, 2H), 4.66 (d, J = 6.8 Hz, 1H),4.54 (d, J = 6.8 Hz, 1H), 3.35 (s, 3H), 3.11-3.17 (m, 2H), 2.44(br d, J = 14.6 Hz, 1H), 2.04-2.14 (m, 2H), 1.15-1.87 (m, 11H),0.94 (d, J = 6.4 Hz, 3H), 0.64 (t, J = 12.0 Hz, 1H). ¹³C NMR: 137.15, 114.71, 95.43, 86.44, 76.13, 55.13, 43.71, 41.39, 40.81,

36.98, 34.24, 30.91, 27.12, 26.64, 24.34, 18.55. Anal. Calcd for $C_{16}H_{28}O_{3}$: C, 71.60; H, 10.52. Found: C, 71.66; H, 10.56. Further elution gave 2.44 g (13%) of alcohol 11 as a white solid, which was recrystallized from Et₂O: mp 59–60 °C. IR: 3620, 3466, 1636 cm⁻¹. ¹H NMR: δ 5.72–5.86 (m, 1H), 5.00–5.06 (m, 2H), 4.70 (d, J = 6.9 Hz, 1H), 4.51 (d, J = 6.9 Hz, 1H), 3.94 (dd, J = 10.4, 4.7 Hz, 1H), 3.35 (s, 3H), 3.12 (td, J = 10.0, 4.5 Hz, 1H), 2.40 (dd, J = 14.1, 8.0 Hz, 1H), 2.10 (dd, J = 14.1, 7.1 Hz, 1H), 1.48–1.84 (m, 11H), 1.15 (br d, J = 13.0 Hz, 1H), 0.89–1.00 (m, 4H). ¹³C NMR: 134.67, 117.06, 94.72, 76.24, 73.97, 55.18, 40.07, 38.29, 36.72, 36.19, 35.51, 34.28, 26.59, 25.53, 19.81, 18.23. Anal. Calcd for $C_{16}H_{28}O_{3}$: C, 71.60; H, 10.52. Found: C, 71.69; H, 10.50.

 (\pm) -(2R*,3R*,4aR*,5S*,8aS*)-1,2,3,4,4a,5,6,7,8,8a-Decahydro-4a-(2-hydroxyethyl)-5-[(methoxymethyl)oxy]-3methylnaphthalen-2-ol (14a). Ozone was passed through a solution of alcohol 9 (13.9 g, 52 mmol) in 300 mL of EtOH at -78 °C until a blue color was visible. The solution was purged with N₂ for 10 min before NaBH₄ (4.8 g, 130 mmol) was added. The reaction mixture was stirred while warming to room temperature over 12 h. The solvent was removed, and the white solid was dissolved in CH2Cl2 and was washed with water and brine. Workup and flash chromatography (0-60% EtOAc/hexanes) yielded 10.58 g (75%) of diol 14a. Recrystallization of a sample gave white crystals: mp 98-99 °C (Et₂O). IR: 3620, 3424, 1452 cm⁻¹. ¹H NMR: δ 4.73 (d, J = 7.0 Hz, 1H), 4.60 (d, J = 7.0 Hz, 1H), 4.05 (dd, J = 9.7, 1.3 Hz, 1H), 3.56-3.76 (m, 2H), 3.37 (s, 3H), 3.10-3.21 (m, 2H), 2.15 (dd, J = 13.9, 3.4 Hz, 1H, 1.61 - 1.97 (m, 7H), 1.14 - 1.45 (m, 6H),0.99 (d, J = 6.4 Hz, 3H), 0.73 (t, J = 13.0 Hz, 1H). ¹³C NMR: 95.22, 85.84, 75.77, 57.86, 55.52, 44.24, 40.45, 36.61, 34.60, 27.84, 26.64, 26.20, 24.25, 18.56. Anal. Calcd for C₁₅H₂₈O₄: C, 66.15; H, 10.36. Found: C, 66.04; H, 10.39.

 (\pm) -(2S*,3S*,4aR*,5S*,8aR*)-1,2,3,4,4a,5,6,7,8,8a-Decahydro-4a-(2-hydroxyethyl)-5-[(methoxymethyl)oxy]-3methylnaphthalen-2-ol (15a). Alcohol 11 (2.05 g, 7.6 mmol) was ozonized and reduced as described for alcohol 9. The product was purified by flash chromatography (0-60% EtOAchexanes) to yield 1.73 g (83%) of diol 15a as a white solid. A sample was recrystallized from MeOH/Et₂O: mp 95-96 °C. IR: 3622, 3425 cm⁻¹. ¹H NMR: δ 4.74 (d, J = 7.1 Hz, 1H), 4.54 (d, J = 7.1 Hz, 1H), 3.97 (dd, J = 11.4, 4.7 Hz, 1H), 3.76 (br t, J = 9.8 Hz, 1H), 3.67 (br d, J = 10.0 Hz, 1H), 3.44– $3.58 \, (m, 1H), 3.35 \, (s, 3H), 3.15 \, (br \, m, 1H), 2.37 \, (ddd, J = 14.6, 3.58 \, (m, 1H), 3.35 \, (s, 3H), 3.15 \, (br \, m, 1H), 3.37 \, (ddd, J = 14.6, 3.58 \, (m, 1H), 3.35 \, (s, 3H), 3.15 \, (br \, m, 1H), 3.37 \, (ddd, J = 14.6, 3.58 \, (m, 1H), 3.35 \, (s, 3H), 3.15 \, (br \, m, 1H), 3.37 \, (ddd, J = 14.6, 3.58 \, (m, 1H), 3.35 \, (m, 1$ 9.7, 4.6 Hz, 1H), 2.11 (dd, J = 14.0, 3.5 Hz, 1H), 1.92 (br s, 1H), 1.72-1.87 (m, 2H), 1.50-1.70 (m, 7H), 1.14-1.24 (m, 2H), 0.99 (d, J = 6.3 Hz, 3H), 0.73 (t, J = 13.3 Hz, 1H). ¹³C NMR: 94.60, 75.96, 74.61, 58.05, 55.56, 42.29, 39.61, 39.01, 38.94, 36.63, 34.08, 26.82, 25.71, 20.38, 18.33. Anal. Calcd for C₁₅H₂₈O₄: C, 66.14; H, 10.36. Found: C, 65.96; H, 10.41.

 (\pm) - $(3S^*,4aR^*,5S^*,8aR^*)$ -4a-(2-Hydroxyethyl)-5-[(methoxymethyl)oxy]-3-methyl-3,4,4a,5,6,7,8,8a-octahydronaphthalen-2(1H)-one (15b). To a stirred solution of diol 15a (1.45 g, 5.3 mmol) in 30 mL of glacial HOAc at room temperature was added 10 mL of commercial bleach (5.25% NaOCl, \sim 7 mmol) dropwise over 1 h.³⁴ The reaction mixture was stirred for an additional 1 h before 15 mL of i-PrOH was added. The solution was concentrated, and the resulting residue was dissolved in CH_2Cl_2 and was washed with water, aqueous NaHCO3, water, and brine. Workup and flash chromatography (0-50% EtOAc/hexanes) gave 1.15 g (80%) of keto alcohol 15b as a colorless oil that solidified on prolonged refrigeration. Recrystallization gave analytical material: mp 56-58 °C (Et₂O/hexanes). IR: 3442, 1708 cm⁻¹. ¹H NMR: δ 4.82 (d, J = 7.2 Hz, 1H), 4.58 (d, J = 7.2 Hz, 1H), 4.18 (dd, J)= 11.5, 4.7 Hz, 1H), 3.76 (br t, J = 9.1 Hz, 1H), 3.51-3.62 (m, 1H), 3.41 (s, 1H), 3.38 (s, 3H), 2.57-2.70 (m, 2H), 2.47 (dd, J $=13.7, 5.5~{\rm Hz}, 1{\rm H}), 2.37~({\rm ddd}, J=14.7, 9.3, 5.1~{\rm Hz}, 1{\rm H}), 1.67-$ 2.05 (m, 6H), 1.56 (app tt, J = 13.8, 4.3 Hz, 1H), 1.32 (dt, J = 13.8, 4.3 Hz, 1H)15.0, 4.6 Hz, 1H), 1.07-1.18 (m, 2H), 0.99 (d, J = 6.4 Hz, 3H). ¹³C NMR: 212.83, 94.40, 73.73, 57.88, 55.59, 44.34, 42.52, 41.26, 39.57, 39.25, 37.41, 26.22, 25.28, 19.49, 13.90. Anal. Calcd for $C_{15}H_{26}O_4$: C, 66.64; H, 9.69. Found: C, 66.52; H,

 (\pm) - $(4S^*,4aS^*,7S^*,9aR^*)$ -4-[(Methoxymethyl)oxy]-7-methyl-1,2,3,4,6,7,9,9a-octahydro-[4a,7]methano-[4aH]benzo-

cyclohepten-8(5H)-one (20) and (\pm)-(3aS*,6aR*,9S*,- $10aR^*$)-1,2,4,5,6,6a,7,8,9,10-Decahydro-9-methyl[10aH]naphtho[1,8a-b]furan-8(3aH)-one (18). To a stirred solution of keto alcohol 15b (0.756 g, 2.8 mmol) and Et₃N (0.78 mL, 5.6 mmol) in 25 mL of CH₂Cl₂ at 0 °C was added MsCl (0.28 mL, 3.6 mmol). After 20 min, the mixture was diluted with CH₂Cl₂ and washed with water, ice cold 5% HCl, water, and brine. Workup gave the crude mesylate 15c as a pale yellow oil. ¹H NMR: δ 4.75 (d, J = 7.1 Hz, 1H), 4.51 (d, J = 7.1 Hz, 1H), 4.45 (td, J = 10.2, 5.9 Hz, 1H), 4.27 (td, J = 10.2, 5.6 Hz, 1H), 4.10-4.15 (m, 1H), 3.35 (s, 3H), 2.97 (s, 3H), 2.54-2.68 (m, 2H), 2.32-2.42 (m, 2H), 1.94-2.07 (m, 3H), 1.49-1.85 (m, 5H), 1.15-1.24 (m, 2H), 0.99 (d, J=6.3 Hz, 3H). ¹³C NMR: 212.10, 94.37, 73.29, 67.16, 55.52, 43.26, 42.42, 41.10, 39.80, 39.22, 37.09, 33.66, 26.32, 25.38, 19.20, 13.86. LRMS (CI): $348 (M^+)$.

The crude mesylate in 2.5 mL of dry THF was added dropwise over 3 h to a solution containing 1.5 mL of 25% NaOMe/MeOH in 30 mL of MeOH. The solution was stirred for an additional 3 h. Acetic acid (1.5 mL) was added, and the solvent was removed. The residue was dissolved in CH2-Cl₂ and was washed with water, aqueous NaHCO₃, water, and brine. Workup and flash chromatography (0-20% EtOAc/ hexanes) afforded 0.474 g (67%) of tricyclic ketone 20 as a colorless oil. IR: 1701, 1462 cm $^{-1}$. 1 H NMR: δ 4.70 (d, J = 6.9 Hz, 1H), 4.57 (d, J = 6.9 Hz, 1H), 3.51 (br s, 1H), 3.38 (s, 1H)3H), 2.70 (dd, J = 16.3, 8.7 Hz, 1H), 2.20-2.30 (br m, 1H), 1.88-1.99 (m, 4H), 1.73-1.82 (m, 2H), 1.27-1.68 (m, 7H), 1.07(s, 3H). ¹³C NMR: 214.50, 94.83, 79.98, 55.40, 53.68, 48.15, 43.85, 42.07, 38.42, 36.31, 35.05, 28.98, 26.91, 19.92, 19.62, Anal. Calcd for C₁₅H₂₄O₃: C, 71.39; H, 9.59. Found: C, 71.23; H, 9.62. Further elution gave 0.116 g (20%) of ether 18 as a colorless oil, which solidified on prolonged refrigeration. Recrystallization gave a white solid: mp 40-40.5 °C (Et₂Ohexanes). IR: 1709, 1456 cm⁻¹. ¹H NMR: δ 3.89-4.06 (m, 2H), 3.46 (br s, 1H), 2.73 (dd, J = 13.8, 6.6 Hz, 1H), 2.50 (app septet, J = 6.5 Hz, 1H), 2.32-2.40 (m, 1H), 2.07 (dd, J = 13.91.6 Hz, 1H), 1.72-1.97 (m, 4H), 1.41-1.58 (m, 5H), 1.13 (td, J= 9.0, 4.0 Hz, 1H), 0.99 (d, J = 6.5 Hz, 3H). ¹³C NMR: 212.27, 81.11, 64.78, 44.20, 43.14, 42.36, 39.54, 38.57, 37.31, 28.30, 25.18, 20.33, 14.15. Anal. Calcd for C₁₃H₂₀O₂: C, 74.96; H, 9.68. Found: C, 75.08; H, 9.77.

 (\pm) -(3R*,4aR*,5S*,8aS*)-4a-(2-Hydroxyethyl)-5-[(methoxymethyl)oxy]-3-methyl-3,4,4a,5,6,7,8,8a-octahydronaphthalen-2(1H)-one (14b). Diol 14a (5.1 g, 18.7 mmol) was oxidized as described for diol 15a (vide supra) to give 3.96 g (78%) of keto alcohol 14b as a white solid after flash chromatography (0-50% EtOAc/hexanes). A sample was recrystallized from Et₂O/MeOH: mp 78.5-80 °C. IR: 3426, 1706 cm⁻¹. ¹H NMR: δ 4.75 (d, J = 7.0 Hz, 1H), 4.62 (d, J = 7.0 Hz, 1H), $3.95 \, (dd, J = 9.8, 2.0 \, Hz, 1H), 3.70 - 3.90 \, (m, 2H), 3.38 \, (s, 3H),$ 3.25 (dd, J = 11.1, 4.1 Hz, 1H), 2.51 (dd, J = 13.6, 5.4 Hz,1H), 2.27-2.38 (m, 2H), 2.08-2.19 (m, 2H), 1.61-1.92 (m, 5H), 1.20-1.41 (m, 3H), 1.11 (t, J = 15.5 Hz, 1H), 1.02 (d, J = 6.4Hz, 3H). ¹³C NMR: 211.36, 95.40, 85.41, 58.20, 55.65, 46.76, 43.35, 42.33, 40.52, 27.54, 26.57, 24.08, 14.25. Anal. Calcd for C₁₅H₂₆O₄: C, 66.64; H, 9.69. Found: C, 66.75; H, 9.76.

 (\pm) - $(4S^*,4aS^*,7S^*,9aS^*)$ -4-[(Methoxymethyl)oxy]-7-methyl-1,2,3,4,5,6,7,8,8a-octahydro-[4a,7]methano[4aH]benzocyclohepten-8(5H)-one (13) and (\pm)-(3aS*,6aS*,9R*,- $10aR^*$)-1,2,4,5,6,6a,7,8,9,10-Decahydro-9-methyl-[10aH]naphtho[1,8a-b]furan-8(3aH)-one (16). Keto alcohol 14b (2.92 g, 10.8 mmol) was derivatized as described for keto alcohol 15b to afford mesylate 14c as a pale yellow oil. 1H NMR: δ 4.73 (td, J = 10.5, 6.0 Hz, 1H), 4.65 (d, J = 6.9 Hz, 1H), 4.51 (d, J = 6.9 Hz, 1H), 4.39 (td, J = 10.5, 5.7 Hz, 1H), 3.32 (s, 3H), 3.18 (dd, J = 11.6, 4.1 Hz, 1H), 3.00 (s, 3H), 2.012.52 (m, 6H), 1.79-1.92 (m, 2H), 1.50-1.63 (m, 2H), 1.24-1.37 (m, 3H), 1.09 (t, J = 13.8 Hz, 1H), 1.02 (d, J = 6.3 Hz, 3H). ¹³C NMR: 210.78, 95.18, 84.97, 67.94, 55.36, 46.18, 43.33, 42.23, 40.36, 37.12, 26.67, 26.61, 25.08, 23.76, 14.22. LRMS (CI): $253 (M^+ - OMs)$.

Cyclization of the mesylate was accomplished as described for mesylate 15c. The crude product was purified by flash chromatography (0-20% EtOAc/hexanes) to give 2.26 g (83%) of tricyclic ketones 13 and 17 (~10:1) as an inseparable mixture along with ether 16. An analytical sample of ketone 13 was prepared by crystallization: mp 34-34.5 °C (Et₂O/ hexanes). IR: 1701, 1459 cm⁻¹. ¹H NMR: δ 4.75 (d, J = 6.8Hz, 1H), 4.59 (d, J = 6.8 Hz, 1H), 3.36 (s, 3H), 3.34 (m, 1H), $2.27 \, (dd, J = 15.8, 6.1 \, Hz, 1H), 1.87 - 2.15 \, (m, 4H), 1.59 - 1.77$ (m, 5H), 1.42 (br d, J = 12 Hz, 1H), 1.18-1.30 (m, 4H), 1.08(s, 3H). ¹³C NMR: 213.54, 95.39, 78.69, 55.28, 52.21, 49.30, 47.63, 44.61, 42.26, 35.94, 28.99, 28.86, 23.59, 22.13, 19.42. Anal. Calcd for C₁₅H₂₄O₃: C, 71.39; H, 9.59. Found: C, 71.33; H, 9.54. Further elution gave 177 mg (8%) of ether 16 as a colorless oil: IR: 1702, 1455 cm⁻¹. ¹H NMR: δ 3.92-4.05 (m, 2H), 3.50-3.55 (m, 1H), 2.45 (app septet, J = 6.4 Hz, 1H), 2.00-2.26 (m, 4H), 1.85-1.93 (m, 1H), 1.64-1.79 (br m, 3H), 1.16-1.37 (m, 5H), 1.00 (d, J = 6.5 Hz, 3H). ¹³C NMR: 211.10, 82.66, 64.40, 46.24, 46.05, 44.74, 42.14, 41.32, 27.97, 27.25, 25.60, 22.60, 14.09. Anal. Calcd for C₁₃H₂₀O₂: C, 74.96; H, 9.68. Found C, 74.76; H, 9.69.

 (\pm) -(4'S*,4a'S*,7'S*,9'aS*)-7'-Methyl-1',2',3',4',6',7',9',9'aoctahydro-spiro[1,3-dioxolane-2,8'(5'H)-[4a',7']methano-[4a'H]benzocyclohepten]-4'-ol (22a). A solution of tricyclic ketones 13 (2.09 g, 8.3 mmol, contaminated with ketone 17) in 40 mL of benzene containing ethylene glycol (4.6 mL, 83 mmol) and p-toluenesulfonic acid (79 mg, 0.4 mmol) was heated at refux for 12 h using a Dean-Stark trap. The solvent was removed and the resulting white solid was dissolved in CH₂Cl₂. The solution was washed with saturated NaHCO₃, water, and brine. Workup and flash chromatography (0-20% EtOAc/hexanes) gave 1.93 g (92%) of ketal alcohol 22a as a white solid. Recrystallization gave colorless needles: mp 127-129 °C (Et₂O). IR: 3615, 1451 cm⁻¹, ¹H NMR: δ 3.76–4.00 (m, 4H), 3.45 (dd, J = 11.4, 3.9 Hz, 1H), 1.58-1.78 (m, 7H),1.02-1.49 (m, 9H), 0.96 (s, 3H). ¹³C NMR: 112.93, 73.28, 65.20, 64.81, 49.34, 47.18, 45.37, 41.23, 37.64, 34.43, 32.30, 28.64, 23.95, 21.01, 19.15. LRMS (EI): 252 (M+). Anal. Calcd for C₁₅H₂₄O₃: C, 71.39; H, 9.59. Found: C, 71.45; H, 9.67.

 (\pm) - $(4a'S^*,7'S^*,9a'S^*)$ -1',2',6',7',9',9'a-Hexahydro-7'-methvl-8-oxo-spiro[1.3-dioxolane-2.8'(5'H)-[4a',7']methano[4a'H]benzocyclohepten]-4'(3'H)-one (22b). To a stirred solution of ketal alcohol 22a (1.23 g, 4.9 mmol) and NaOAc (0.64 g, 7.8 mmol) in 35 mL of CH₂Cl₂ was added pyridinium chlorochromate (1.58 g, 7.3 mmol).36 The reaction mixture was stirred at room temperature for 12 h. The product was diluted with $\rm Et_2O$, filtered through a pad of Florisil and washed with $\rm Et_2O$ until no product was detected in the washings by TLC. Removal of the solvent and flash chromatography (0-10%)EtOAc/hexanes) yielded 1.19 g (98%) of ketone 22b as a white solid. A sample was recrystallized from Et₂O/hexanes: mp 71-72 °C. IR: 1698, 1454 cm⁻¹. ¹H NMR: δ 3.75-4.00 (m, 4H), 2.22–2.31 (m, 2H), 1.37–2.01 (m, 13H), 0.97 (s, 3H). ¹³C NMR: 213.43, 111.93, 65.19, 64.81, 56.69, 47.79, 43.17, 42.84, 39.86, 37.25, 34.10, 29.13, 28.16, 25.54, 18.78. Anal. Calcd for C₁₅H₂₂O₃: C, 71.97; H, 8.86. Found: C, 71.84; H, 8.90.

 (\pm) - $(4a'S^*,7'S^*,9a'S^*)$ -7'-Methyl-6',7',9',9'a-tetrahydrospiro[1,3-dioxolane-2,8'(5'H)-[4a',7']methano[4a'H]**benzocyclohepten**]-4'(1'H)-one (23). To a solution of dry diisopropylamine (0.39 mL, 2.8 mmol) in 15 mL of THF at 0 °C was added n-BuLi (1.8 mL of 1.45M, 2.6 mmol) dropwise. A solution of ketone 22b (500 mg, 2.0 mmol) in THF (5 mL) was added dropwise to the LDA solution at -78 °C. After stirring the reaction mixture for 20 min, TMSCl (0.36 mL, 2.8 mmol) was added in one portion. The reaction mixture was warmed to 0 °C and was quenched with saturated NaHCO₃. The solvent was removed, and the residue was dissolved in CH₂Cl₂ and washed with saturated NaHCO₃ and water. Workup gave the crude silyl enol ether, which was dissolved in 15 mL of dry CH₃CN. Pd(OAc)₂ (0.54 g, 2.4 mmol) was added, and the mixture was stirred at room temperature for 36 h and then was heated at ~ 50 °C for 8 h. The reaction mixture was cooled, concentrated, and purified by flash chromatography (0-10% EtOAc/hexanes), yielding 444 mg (90%) of enone 23 as a yellow solid. Recrystallization gave 23 as a white solid: mp 102-103 °C (Et₂O). IR: 1663, 1454 cm⁻¹. ¹H NMR: δ 6.82–6.88 (m, 1H), 5.95–5.99 (m, 1H), 3.76–4.01 (m, 4H), 2.08-2.26 (m, 4H), 1.70-1.91 (m, 3H), 1.40-1.64 (m, 4H), 1.70-1.91 (m, 4H), 1.4H), 1.02 (s, 3H). ¹³C NMR: 202.27, 148.35, 129.26, 111.77, 65.23, 64.84, 52.84, 48.37, 44.01, 38.45, 37.12, 34.11, 29.48,

27.94, 18.72. Anal. Calcd for $C_{15}H_{20}O_3$: C, 72.55; H, 8.12. Found: C, 72.48; H, 8.17.

 (\pm) - $(4a'S^*,7'S^*,9a'S^*)$ -7'-Methyl-4'-[4''-pentenyl]-6',7',9',9'atetrahydrospiro[1,3-dioxolane-2,8'(5'H)-[4a',7']methano-[4a'H]benzocyclohepten]-2'(1'H)-one (25a). A solution of 4-pentenyllithium⁴² was prepared by adding a solution of 5-bromo-1-pentene (1 mL, 8.4 mmol) in 3 mL of dry Et₂O to a sonicated suspension of finely cut Li wire (0.25 g) in 4 mL of Et₂O. The mixture was sonicated for 1 h. Approximately 2 mL of the lithium reagent was added to a solution of enone 23 (225 mg, 0.9 mmol) in dry Et₂O (5 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature before quenching with saturated NH₄Cl. Dilution with CH₂Cl₂ and washing with water and brine followed by workup (MgSO₄) gave a crude product that was dissolved in CH₂Cl₂ (4.8 mL) and DMF (0.2 mL). Pyridinium chlorochromate (600 mg, 2.8 mmol)36 was added, and the reaction mixture was heated at reflux for 12 h. Dilution of the mixture with EtOAc, washing with water, workup (MgSO₄), and flash chromatography (0-15% EtOAc/hexanes) gave 228 mg (80%) of enone 25a. Recrystallization from Et₂O/hexanes gave white crystals: mp 63-64 °C. IR: 1659, 1611 cm⁻¹. ¹H NMR: δ 5.84 (s, 1H), 5.74– 5.85 (m, 1H), 4.97 - 5.05 (m, 2H), 3.79 - 4.02 (m, 4H), 2.06 - 2.25(m, 7H), 1.40-1.90 (m, 10H), 1.04 (s, 3H). ¹³C NMR: 198.55, 168.89, 137.74, 125.84, 115.10, 111.58, 65.32, 64.90, 48.80, 47.95, 46.04, 40.16, 40.06, 37.32, 34.24, 33.17, 31.00, 28.06, 27.03, 19.24. Anal. Calcd for C₂₀H₂₈O₃: C, 75.91; H, 8.92. Found: C, 75.80; H, 8.99.

 (\pm) -(4a'S*,7'S*,9a'S*)-7'-Methyl-4'-(5''-methyl-4''-hexenyl)-6',7',9',9'a-tetrahydrospiro[1,3-dioxolane-2,8'(5'H)-[4a',7']methano[4a'H]benzocyclohepten]-2'(1'H)-one (25b). To a stirred solution of 6-iodo-2-methyl-2-hexene (1.08 g, 4.8 mmol) in 35 mL of Et₂O at -78 °C was added tert-BuLi (6.5 mL of 1.5 M, 9.7 mmol) dropwise over 5 min. 48,49 After stirring the reaction mixture at -78 °C for 20 min and at room temperature for 45 min, a solution of enone 23 (600 mg, 2.4 mmol) in 5 mL of Et₂O was added to the lithium reagent. Stirring was continued at room temperature for 20 min before the addition of aqueous NaHCO₃. The reaction mixture was diluted with Et₂O and washed with water and brine. Workup gave a crude product that was dissolved in 20 mL of CH₂Cl₂ containing ~1 mL of DMF. Pyridinium chlorochromate (1.57 g, 7.3 mmol)³⁶ was added, and the reaction mixture was stirred at room temperature for 12 h. The mixture was diluted with ether and passed through a short column of Florisil until the Et₂O washings were free of product by TLC. Flash chromatography (0-30% EtOAc/hexanes) yielded 32 mg (4%) of pure 1,4-adduct as a colorless oil: IR: 2931, 1696, 1452 cm⁻¹. ¹H NMR: $\delta 5.02-5.09$ (m, 1H), 3.78-4.02 (m, 4H), 2.46 (dd, J =13.6, 5.7 Hz, 1H), 2.19 (br d, J = 13.6 Hz, 1H), 1.67 (s, 3H), 1.58 (s, 3H), 1.58-2.07 (m, 10H), 1.24-1.50 (m, 8H), 0.99 (s, 3H). ¹³C NMR: 214.02, 131.53, 124.38, 112.25, 65.41, 65.09, $56.81,\ 48.21,\ 44.58,\ 42.88,\ 38.02,\ 37.50,\ 35.56,\ 34.23,\ 32.35,$ 32.10, 29.41, 27.87, 27.73, 25.70, 18.97, 17.71. HRMS (CI) Calcd for $C_{22}H_{35}O_3$ (M + H)+: 347.2586. Found: 347.2587.

Further elution gave 695 mg (84%) of enone **25b** as a colorless oil. IR: 2959, 1658, 1613 cm⁻¹. ¹H NMR: δ 5.83 (s, 1H), 5.09 (br t, J = 6.8 Hz, 1H), 3.79 – 4.02 (m, 4H), 1.98 – 2.25 (m, 7H), 1.69 (s, 3H), 1.59 (s, 3H), 1.36 – 1.90 (m, 10H), 1.04 (s, 3H). ¹³C NMR: 198.72, 169.32, 132.25, 125.83, 123.62, 111.69, 65.40, 64.93, 48.83, 48.00, 46.12, 40.23, 40.12, 37.38, 34.31, 31.34, 28.20, 28.11, 27.62, 25.63, 19.31, 17.69. Anal. Calcd for $C_{22}H_{32}O_{3}$: C, 76.70; H, 9.36. Found: C, 76.44; H, 9.37.

(\pm)-($4'S^*$, $4a'S^*$, $7'S^*$, $9a'S^*$)-3',4',6',7',9',9'a-Hexahydro-4'-(5''-methyl-4''-hexenyl)-4',7'-dimethylspiro[1,3-dioxolane-2,8'(5'H)-[4a',7']methano[4a'H]benzocyclohepten]-2'(1'H)-one (27). To a stirred solution of enone 25b (660 mg, 1.9 mmol) in Et₂O (15 mL) containing LiBr (500 mg, 5.6 mmol) and Ni(acac)₂ (49 mg, 10 mol %) was added Me₂Zn (4.8 mL of 2 M solution in toluene, 9.6 mmol) dropwise over 10 min. 46 The reaction mixture was stirred at room temperature for 36 h followed by the addition of aqueous NaHCO₃ and dilution with CH₂Cl₂. The organic phase was washed with water and brine. Workup (MgSO₄) and flash chromatography (0–20% EtOAc/hexanes) afforded 586 mg (85%) of ketone 27 as a white

solid. A sample was recrystallized from Et₂O/hexanes: mp 100.5-101.5 °C. IR: 2968, 1701, 1454 cm⁻¹. 1 H NMR: δ 5.09 (br t, J=6.8 Hz, 1H), 3.77-4.01 (m, 4 H), 1.82-2.29 (m, 9H), 1.68 (s, 3H), 1.59 (s, 3H), 1.34-1.70 (m, 8H), 1.16-1.31 (m, 2H), 0.99 (s, 3H), 0.83 (s, 3H). 13 C NMR: 211.09, 131.55, 124.25, 112.05, 65.28, 64.90, 49.95, 49.70, 47.69, 44.43, 42.48, 40.90, 39.05, 38.65, 35.69, 34.82, 28.80, 25.59, 24.23, 23.72, 20.55, 19.32, 17.64. Anal. Calcd for $C_{23}H_{36}O_{3}$: C, 76.62; H, 10.06. Found: C, 76.45; H, 10.06. Further elution yielded 35 mg of enone **25b**.

 $(\pm)\cdot(4'S^*,4a'S^*,7'S^*,9a'S^*)\cdot3',4',6',7',9',9'a$ -Hexahydro-4',7'-dimethyl-4'-(4"-oxobutyl)spiro[1,3-dioxolane-2,8'-(5'H)-[4a',7']methano[4a'H]benzocyclohepten]-2'(1'H)one (28). A solution of ketone 27 (90 mg, 0.25 mmol), containing Na₂CO₃ (~5 mg) in CH₂Cl₂ (6 mL) at -78 °C was ozonized until a blue color was visible. The solution was purged with N2 for 10 min before the addition of dimethyl sulfide (0.5 mL). The solution was warmed to room temperature and stirred for 12 h. Removal of solvent and flash chromatography (0-30% EtOAc/hexanes) yielded 75.1 mg (90%) of keto aldehyde 28 as a white solid. Recrystallization afforded an analytical sample: mp 80-81 °C (Et₂O). IR: 2960, 1718, 1701 cm⁻¹. ¹H NMR: δ 9.76 (br s, 1H), 3.77–4.01 (m, 4H), 2.45 (td, J = 6.7, 1.1 Hz, 2H), 2.05-2.30 (m, 5H), 1.79-1.89 (m, 2H), 1.34-1.70 (m, 10H), 0.98 (s, 3H), 0.87 (s, 3H). ¹³C NMR: 210.71, 202.14, 112.00, 65.36, 64.97, 49.89, 49.51, 47.76, 44.43, 44.36, 42.49, 41.00, 39.03, 38.64, 35.46, 34.78, 23.82, 20.52, 19.33, 16.60. Anal. Calcd for C₂₀H₃₀O₄: C, 71.82; H, 9.04. Found: C, 71.87; H, 9.11.

 (\pm) - $(6a'S^*,9'S^*,11a'S^*,11b'R^*)$ -9',11b'-Dimethyl-1',2',3',6'a,7',10',11',11b'-octahydrospiro[1,3-dioxolane-2,8'(9'H)-[9',11a']methano[11a'H]cyclohept[a]naphthalen]-5'(6'H)-one (29). To a vigorously refluxing solution of KOH (0.47 g, 7 mmol) in MeOH/water (1:1; 90 mL) was added a solution of keto aldehyde 28 (1.61 g, 4.82 mmol) in MeOH (15 mL) dropwise over 90 min. The reaction mixture was heated at reflux for 12 h. The mixture was cooled to room temperature, aqueous NH₄Cl was added, and the solvent was removed. The residue was dissolved in CH₂Cl₂ and was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-20% EtOAc/hexanes) gave 1.21 g (80%) of enone 29 as a white solid. Recrystallization gave an analytical sample: mp 138.5-140 °C (Et₂O). IR: 2946, 1676, 1618 cm⁻¹. ¹H NMR: δ 6.61 (dd, J = 5.7, 2.4 Hz, 1H), 3.78–4.03 (m, 4H), 2.58 (dd, J = 10.0, 7.4 Hz, 1H, 2.29 - 2.40 (m, 1H), 1.97 - 2.21 (m, 3H),1.23-1.87 (m, 12H), 1.07 (s, 3H), 0.98 (s, 3H). ^{13}C NMR: 201.57, 142.60, 134.75, 112.23, 65.40, 65.04, 49.80, 47.89, 42.33, 42.10, 39.51, 38.25, 35.15, 34.99, 29.65, 25.47, 25.03, 24.48, 19.46, 18.30. Anal. Calcd for C₂₀H₂₈O₃: C, 75.91; H, 8.92. Found: C, 75.78; H, 8.87.

 (\pm) -(4'R*,4a'S*,6a'S*,9'S*,11a'S*,11b'S*)-1',2',3',4',6a',-6a',7',10',11',11b'-Decahydro-9',11b'-dimethyl-4'-vinylspiro-[1,3-dioxolane-2,8'(9'H)-[9',11a']methano[11a'H]cyclohept-[a]naphthalen]-5'(4a'H)-one (30). A stirred suspension of CuBrDMS complex (163 mg, 0.79 mmol) in THF (23 mL) was cooled to -78 °C. Vinylmagnesium bromide (4.75 mL, 1 M in THF, 4.75 mmol) was added dropwise followed by HMPA (1.1 mL, 6.3 mmol). The mixture was stirred for 20 min before a solution of enone 29 (500 mg, 1.58 mmol) and TMSCl (0.71 mL, 5.5 mmol) in THF (5 mL) was added dropwise. The mixture was stirred for 30 min, excess aqueous NH₄Cl was added, and the mixture was stirred for 1 h at room temperature. The solvent was removed, and the residue was dissolved in CH2Cl2. The organic phase was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-10% EtOAc/hexanes) yielded 472 mg (87%) of ketone 30 as a white solid. Recrystallization gave an analytical sample: mp 135.5-137 °C (Et₂O/hexanes). IR: 2949, 1700, 1604 cm⁻¹. ¹H NMR: δ 6.20 (ddd, J = 17.7, 10.8, 4.0 Hz, 1H), 4.98-5.11 (m, 2H), 3.78-4.02 (m, 4H), 2.85 (br m, 1H), 2.23-2.37 (m, 3H), 1.83-2.09 (m, 4H), 1.53-1.72 (m, 5H), 1.23-1.51 (m, 6H), 0.97 (s, 3H), 0.95 (s, 3H). ¹³C NMR: 210.68, 140.49, 112.32, 112.10, 65.33, 65.00, 56.08, 51.19, 47.50, 44.31, 41.49, 41.07, 38.80, 36.83, 34.88, 34.15, 31.53, 28.63, 32.22, 20.01, 19.45, 16.81. Anal. Calcd for C₂₂H₃₂O₃: C, 76.70; H, 9.36. Found: C, 76.62; H. 9.32.

 (\pm) -(4'R*,4a'S*,5'R*,6a'S*,9'S*,11a'S*,11b'S*)-1',2',3',4',-4a',5',6',6a',7',10',11',11b'-Dodecahydro-9',11b'-dimethyl-4'-vinylspiro[1,3-dioxolane-2,8'(9'H)-[9',11a']methano-[11a/H]cvclohept[a]naphthalen]-5'-ol (31a) and (\pm)-(4'R*,-4a'S*,5'S*,6a'S*,9'S*,11a'S*,11b'S*)-1',2',3',4',4a',5',6',6a',7',-10'.11'.11b'-Dodecahydro-9'.11b'-dimethyl-4'-vinylspiro-[1,3-dioxolane-2,8'(9'H)-[9',11a']methano[11a'H]cyclohept-[a]naphthalen]-5'-ol (31c). To a solution of ketone 30 (470) mg, 1.37 mmol) in THF (20 mL) at -78 °C was added DIBALH (4 mL, 1 M in THF, 4 mmol). The reaction mixture was stirred for 15 min before the addition of aqueous NaHCO3. The THF was removed, and residue was dissolved in CH2Cl2 and was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-20% EtOAc/hexanes) gave 330 mg (70%) of axial alcohol 31a. An analytical sample was recrystallized from Et₂O: mp 166-168 °C. IR: 3555, 2937, 1625 cm⁻¹. ¹H NMR: δ 6.58 (app dt, J = 16.9, 10.2 Hz, 1H), 5.24 (dd, J =16.9, 2.1 Hz, 1H), 5.07 (dd, J = 10.2, 2.1 Hz, 1H), 3.74-4.01 (m, 5H), 2.45-2.50 (br m, 1H), 2.23-2.33 (m, 1H), 1.30-1.83 (m, 16H), 1.27 (s, 3H), 1.13-1.22 (m, 1H), 0.94 (s, 3H). 13 C NMR: 144.70, 115.90, 112.80, 72.57, 65.16, 64.78, 51.83, 48.08, 46.89, 45.82, 42.52, 38.26, 38.09, 36.90, 35.08, 33.95, 33.23, $32.26,\ 22.92,\ 22.23,\ 19.43,\ 18.20.$ Anal. Calcd for $C_{22}H_{34}O_3$: C, 76.24; H, 9.91. Found: C, 76.38; H, 9.92. Further elution yielded 106 mg (22%) of equatorial alcohol 31c. An analytical sample was recrystallized from Et₂O: mp 153.5-155 °C. IR: 3608, 3468, 2936, 1631 cm⁻¹. ¹H NMR: δ 6.16 (ddd, J = 17.8, 10.3, 8.2 Hz, 1H), 5.02-5.15 (m, 2H), 3.70-4.00 (m, 5H), 2.72-2.78 (br m, 1H), 1.91-2.03 (m, 1H), 1.19-1.85 (m, 18H), 0.96 (s, 3H), 0.93 (s, 3H). ¹³C NMR: 140.62, 114.46, 112.77, 67.46, 65.26, 64.97, 51.45, 49.08, 47.21, 42.14, 38.78, 38.67, 36.96, 35.89, 35.08, 32.70, 30.53, 23.57, 19.50, 19.49, 17.62. Anal. Calcd for C₂₂H₃₄O₃: C, 76.24; H, 9.91. Found: C, 76.07; H,

 (\pm) -(4'R*,4a'S*,5'R*,6a'S*,9'S*,11a'S*,11b'S*)-5'-(Benzoyloxy)-1',2',3',4',4a',5',6',6a',7',10',11',11b'-dodecahydro-9',11b'-dimethyl-4'-vinylspiro[1,3-dioxolane-2,8'(9'H)-[9',11a']methano[11a'H]cyclohept[a]naphthalene] (31b). A solution of alcohol 31a (325 mg, 0.94 mmol), DMAP (23 mg, 20 mol %), and benzoyl bromide (0.22 mL, 1.87 mmol) in pyridine (9 mL) was heated at reflux for 4 h. Excess pyridine was removed, and the residue was dissolved in CH2Cl2 and was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-10% EtOAc/hexanes) yielded 380 mg (90%) of benzoate 31b as a white solid: Recrystallization gave colorless needles: mp 212-214 °C (Et₂O). IR: 2937, 1706, 1601 cm⁻¹. ¹H NMR: δ 7.99 (d, J = 7.5 Hz, 2H), 7.53 (t, J =7.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 6.26 (app dt, J = 16.7, 10.0 Hz, 1H), 5.22 (br d, J = 2.2 Hz, 1H), 4.78 (dd, J = 16.7, 1.5 Hz, 1H), 4.42 (dd, J = 11.7, 1.5 Hz, 1H), 3.74-3.98 (m, 4H), 2.42-2.48 (br m, 1H), 2.14-2.25 (m, 1H), 1.47 (s, 3H), 1.33-1.92 (m, 16H), 1.22 (t, J = 13.1 Hz, 1H), 0.96 (s, 3H). ¹³C NMR: 166.23, 141.65, 132.36, 131.14, 129.59, 128.14, 112.89, 112.67, 74.50, 65.22, 64.93, 51.76, 47.04, 45.91, 44.87, 42.51, 38.35, 38.24, 34.99, 34.26, 33.81, 32.91, 23.01, 22.20, 19.45, 18.22. Anal. Calcd for C₂₉H₃₈O₄: C, 77.28; H, 8.52. Found: C, 77.21; H, 8.42.

 (\pm) -(4'S*,4a'S*,5'R*,6a'S*,9'S*,11a'S*,11b'S*)-5'-(Benzoyloxy)-1',2',3',4',4a',5',6',6a',7',10',11',11b'-dodecahydro-4'-(hydroxymethyl)-9',11b'-dimethylspiro[1,3-dioxolane2,8'(9'H)-[9',11a'] methano[11a'H] cyclohept[a]naphthalene]-4'-carboxaldehyde (32c). Ozone was passed through a stirred solution cooled to -78 °C of unsaturated benzoate 31b (350 mg, 0.78 mmol) in MeOH/CH $_2$ Cl $_2$ (1:1, 12 mL) containing Na₂CO₃ (8 mg) until a blue color became visible. The solution was purged with N_2 for 10 min before the addition of dimethyl sulfide (0.57 mL, 7.8 mmol). The mixture was stirred for 12 h while warming to room temperature. Sodium carbonate (15 mg) and aqueous formaldehyde (2 mL of 37% solution) were added, and the mixture was stirred at room temperature for 9 h. The reaction mixture was diluted with CH2Cl2 and was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-10% EtOAc/ hexanes) afforded 300 mg (80%) of aldol 32c as a solid. Recrystallization was accomplished with Et₂O/MeOH/hexanes: mp 196-198 °C dec. IR: 2945, 1711, 1600 cm⁻¹. ¹H

NMR (CD₂Cl₂); δ 10.02 (s, 1H), 7.97 (d, J = 7.5 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 5.63 (br s, 1H),3.71-3.95 (m, 5H), 3.54 (d, J = 11.0 Hz, 1H), 2.13-2.24 (m, 1H), 2.04 (br d, J = 13.7 Hz, 1H), 1.73–1.94 (m, 6H), 1.41 (s, 3H), 1.44-1.66 (m, 9H), 1.15-1.37 (m, 2H), 0.95 (s, 3H). ¹³C NMR (CD₂Cl₂): 206.73, 166.07, 133.47, 130.82, 129.91, 128.97, 112.80, 70.53, 67.48, 65.71, 65.32, 54.42, 52.25, 48.40, 47.46, 43.30, 38.86, 38.48, 35.41, 34.50, 33.94, 32.62, 31.20, 23.37, 22.46, 19.63, 18.81. HRMS (CI) Calcd for $C_{29}H_{39}O_6 (M + H)^+$: 483.2746. Found: 483.2726.

If desired, aldehyde 32b can be isolated before the addition of formaldehyde as a colorless solid after crystallization: mp 198-200 °C (Et₂O/CH₂Cl₂/hexanes). IR: 2944, 1711, 1602 cm⁻¹. 1 H NMR : δ 10.02 (d, J = 1.3 Hz, 1H), 7.98 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.45 (t, J = 7.3 Hz, 2H), 5.41(br d, J = 2.6 Hz, 1H), 3.74-4.00 (m, 4H), 2.50 (br m, 1H), 2.16-2.24 (br d, J = 12.6 Hz, 2H), 1.32 (s, 3H), 1.19-1.95 (m, 16H), 0.96 (s, 3H). LRMS (EI): 452 (M⁺).

 (\pm) -(4S*,4aS*,5R*,6aS*,9S*,11aS*,11bS*)-5-(Benzoyloxy)-4-(hydroxymethyl)-9,11b-dimethyl-8-oxo-1,2,3,4,4a,5,6,-6a,7,8,9,10,11,11b-tetradecahydro-9,11a-methano-11aHcyclohept[a]naphthalen]-4-carboxylic Acid. (±)-Scopadulcic Acid A (1). To a stirred solution of aldol 32c (100 mg, 0.21 mmol) in tert-BuOH (1.5 mL), THF (0.5 mL), and 2-methyl-2-butene (0.5 mL) at room temperature was added a solution of NaClO2 (116 mg of 80% purity, 1.03 mmol) and NaH₂PO₄ (120 mg) in water (0.6 mL). The reaction mixture was stirred at room temperature until no starting material was visible by TLC (approximately 6 h). The reaction mixture was acidified to pH 2 with 1 M HCl, stirred for 12 h, and then heated at a gentle reflux for 1 h. The volatile components were removed, and the residue was dissolved in CH2Cl2 and was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-50% EtOAc/hexanes) gave 61 mg (65%)of scopadulcic acid A as a white solid. Recrystallization gave colorless crystals: mp 251-253 °C dec (acetone/MeOH) (lit. 16 237-239 °C, dec). IR (KBr disc): 3482, 2934, 1717, 1700 cm⁻¹. ¹H NMR (acetone- d_6): δ 7.96 (d, J = 7.2 Hz, 2H), 7.57 (t, J =7.2 Hz, 1H, 7.44 (t, J = 7.2 Hz, 2H), 5.60 (br s, 1H), 3.80 (d,J = 11.0 Hz, 1H), 3.58 (d, J = 11.0 Hz, 1H), 2.28-2.55 (m, 2H), 2.22 (br t, J = 13.4 Hz, 1H), 2.01–2.15 (m, 3 H), 1.90 (d, J = 12.1 Hz, 1H, 1.80 - 1.95 (m, 3H), 1.59 (s, 3H), 1.55 - 1.79(m, 7H), 1.46 (d, J = 12.2 Hz, 1H), 1.01 (s, 3H). ¹³C NMR (acetone- d_6): 212.65, 178.20, 166.65, 133.66, 132.50, 130.76, 129.50, 70.36, 68.10, 54.13, 53.12, 48.73, 46.33, 44.88, 43.36, 39.93, 37.60, 36.92, 35.69, 35.08, 33.44, 24.37, 21.56, 20.42, 20.10. HRMS (CI) Calcd for $C_{27}H_{35}O_6$ (M + H)⁺: 455.2433. Found: 455.2438.

 (\pm) -(4'S*,4a'S*,5'R*,6a'S*,9'S*,11a'S*,11b'S*)-5'-(Benzoyloxy)-1',2',3',4',4a',5',6',6a',7',10',11',11b'-dodecahydro-9',11b'-dimethyl-4'-[[(methoxymethyl)oxy]methyl]spiro[1,3-dioxolane-2,8'(9'H)-[9',11a']methano[11a'H]cyclohept[a]naphthalene]-4'-carboxaldehyde (33a). To a stirred solution of aldol 32c (250 mg, 0.52 mmol) and i-Pr₂-NEt (0.54 mL, 3.1 mmol) in CH₂Cl₂ (5 mL) at room temperature was added MOMCl (0.16 mL, 2.1 mmol) dropwise. The reaction mixture was stirred for 24 h and then diluted with water. After dilution with CH2Cl2, the organic phase was washed with water, ice-cold 5% HCl, water, and brine. Workup (MgSO₄) and flash chromatography (0-20% EtOAc/ hexanes) yielded 249 mg (91%) of aldehyde 33a as a white foam: IR: 2947, 1710, 1601 cm⁻¹. ¹H NMR: δ 9.95 (s, 1H), 7.98 (d, J = 7.4 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H)7.4 Hz, 2H), 5.66 (br d, J = 2.4 Hz, 1H), 4.54 (s, 2H), 3.74-3.98 (m, 4H), 3.57 (d, J = 9.7 Hz, 1H), 3.51 (d, J = 9.7 Hz,1H), 3.30 (s, 3H), 2.08-2.22 (m, 2H), 1.76-1.96 (m, 5H), 1.50-1.961.67 (m, 6H), 1.39-1.48 (m, 3H), 1.34 (s, 3H), 1.16-1.27 (m, 2H), 0.95 (s, 3H). ¹³C NMR: 205.31, 165.65, 132.99, 130.16, 129.52, 128.45, 112.38, 96.72, 71.56, 70.07, 65.22, 64.89, 55.39, 53.09, 51.70, 47.66, 46.98, 42.87, 38.44, 38.05, 34.91, 34.04, 33.52, 32.10, 31.13, 22.87, 21.42, 19.36, 18.35. Anal. Calcd for C₃₁H₄₂O₇: C, 70.70; H, 8.04. Found: C, 70.57; H, 7.98.

 (\pm) -(4'R*,4a'S*,5'R*,6a'S*,9'S*,11a'S*,11b'S*)-5'-(Benzoyloxy)-1',2',3',4',4a',5',6',6a',7',10',11',11b'-dodecahydro-4'-(hydroxymethyl)-9',11b'-dimethyl-4'-[[(methoxymethyl)oxy]methyl]spiro[1,3-dioxolane-2,8'(9'H)-

[9',11a']methano[11a'H]cyclohept[a]naphthalene]-4'methanol (33b). To a stirred solution of aldehyde 33a (235 mg, 0.45 mmol) in EtOH (4 mL) at 0 °C was added a solution of NaBH4 (16.5 mg, 0.45 mmol) in EtOH (1 mL). After 30 min, the ice bath was removed and the reaction mixture was stirred for 6 h at room temperature. Aqueous NH4Cl was added followed by dilution with CH2Cl2. The organic phase was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-30% EtOAc/hexanes) afforded 234 mg (99%) of alcohol 33b as a colorless oil: IR: 3518, 2945, 1707, 1600 cm⁻¹. ¹H NMR: δ 8.03 (d, J = 7.4 Hz, 2H), 7.56 (t, J =7.4 Hz, 1H, 7.44 (t, J = 7.4 Hz, 2H), 5.59 (br s, 1H), 4.57 (s,2H), 3.68-4.07 (m, 6H), 3.57 (d, J = 9.4 Hz, 2H), 3.41 (d, J = 9.4 Hz, 2H), 3.41 (d, J = 9.4 Hz, 2H), 3.68-4.07 (m, 6H), 3.57 (d, J = 9.4 Hz, 2H), 3.68-4.079.4 Hz, 1H), 3.33 (s, 3H), 2.06-2.18 (m, 3H), 1.48 (s, 3H), 1.37-1.91 (m, 14H), 1.18 (t, J = 12.8 Hz, 1H), 0.94 (s, 3H). ¹³C NMR: 165.81, 132.69, 130.70, 129.44, 128.30, 112.45, 96.82, 76.37, 70.95, 65.11, 64.79, 63.35, 55.35, 52.36, 46.92, 46.66, 43.13, 42.55, 38.65, 38.06, 34.85, 34.62, 34.14, 32.27, 30.48, 23.18, 22.50, 19.35, 17.80. HRMS (CI) Calcd for C₃₁H₄₅O₇ (M + H)+: 529.3165. Found: 529.3111.

 (\pm) -O-(4'S*,4a'S*,5'R*,6a'S*,9'S*,11a'S*,11b'S*)-5'-(Benzoyloxy)-1',2',3',4',4a',5',6',6a',7',10',11',11b'-dodecahydro-9',11b'-dimethyl-4'-[[(methoxymethyl)oxy]methyl]-4'spiro[1,3-dioxolane-2,8'(9'H)-[9',11a']methano[11a'H]cyclohept[a]naphthyl]methyl S-Methyl Carbonodithioate (33c). To a solution of alcohol 33b (170 mg, 0.32 mmol) in THF (3 mL) cooled to -78 °C was added potassium hexamethyldisilazide (1.3 mL, 0.5 M solution in toluene, 0.65 mmol). After 5 min, CS2 (0.20 mL, 3.3 mmol) was added in one portion followed by a single portion of MeI (0.21 mL, 3.3 mmol) 2 min later. The reaction mixture was warmed to 0 °C, quenched with aqueous NH₄Cl, and diluted with CH₂Cl₂. The organic phase was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-30% EtOAc/hexanes) yielded 170 mg (85%) of xanthate 33c as a colorless oil: IR: 2946, 1709, 1600, 1276 cm⁻¹. ¹H NMR: δ 8.07 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.44 (t, J = 7.3 Hz, 2H), 5.64 (br s, 1H), 5.31 (d, J = 11.4 Hz, 1H), 4.58 (s, 2H), 4.47 (d, J =11.4 Hz, 1H, 3.74 - 3.98 (m, 4H), 3.57 (d, J = 9.9 Hz, 1H), 3.35(s, 3H), 3.34 (d, J = 9.9 Hz, 1H), 2.43 (s, 3H), 2.10-2.19 (m, 1H), 1.75-1.94 (m, 5H), 1.53 (s, 3H), 1.51-1.66 (m, 7H), 1.15-1.49 (m, 5H), 0.95 (s, 3H). ¹³C NMR: 215.21, 165.91, 132.78, 130.43, 129.77, 128.23, 112.45, 96.73, 74.75, 73.40, 71.12, 65.23, 64.87, 55.37, 52.45, 46.98, 46.18, 42.65, 42.41, 38.61, 38.16, 34.92, 34.37, 33.83, 32.24, 31.26, 23.25, 22.44, 19.43, 18.65, 18.00. HRMS (CI) Calcd for $C_{33}H_{47}O_7S_2$ (M + H)+: 619.2763. Found: 619.2745.

(\pm)-(4R*,4aS*,5R*,6aS*,9S*,11aS*,11bS*)-5-(Benzoyloxy)-4-(hydroxymethyl)-4,9,11b-trimethyl-1,2,3,4,4a,5,6,6a,7,8,9,10,11,11b-tetradecahydro-9,11a-methano-11aH-cyclohept-[a]naphthalene-8(9H)-one. (\pm)-Scopadulciol (2b). To a solution of n-Bu₃SnH (0.21 mL, 0.78 mmol) and AIBN (8.5 mg, 0.052 mmol) in benzene (3 mL) maintained at a gentle reflux was added a solution of xanthate 33c (160 mg, 0.26 mmol) in benzene (0.5 mL). The solution was heated at reflux for 1 h. The solution was cooled and the solvent removed. The resulting liquid was loaded on a short silica column and was eluted with 0-20% EtOAc/hexanes to remove tin salts. The semicrude product was dissolved in THF (3 mL). Aqueous HCl (4 drops; 1 M) was added, and the mixture was heated at reflux for 12 h. The solvent was removed, and the residue was dissolved in CH₂Cl₂. The organic phase was washed with

 (\pm) -(4R*,4aS*,5R*,6aS*,9S*,11aS*,11bS*)-5-(Benzoyloxy)-4,9,11b-trimethyl-8-oxo-1,2,3,4,4a,5,6,6a,7,8,9,10,11,11btetradecahydro-9,11a-methano-11aH-cyclohept[a]naphthalen-4-carboxylic Acid. (\pm) -Scopadulcic Acid B (2a). Scopadulciol (2b) (29 mg, 0.068 mmol) was suspended in acetone (1 mL). Jones reagent was added dropwise until TLC indicated that no starting material was present. The reaction mixture was diluted with CH2Cl2, and the organic phase was washed with water and brine. Workup (MgSO₄) and flash chromatography (0-30% EtOAc/hexanes) gave 24.9 mg (83%) of scopadulcic acid B (2a) as a white solid. Recrystallization from CH_2Cl_2/Et_2O yielded white crystals, mp 252–253 °C dec. IR: 2945, 1707 (br), 1601 cm $^{-1}$. 1 H NMR: δ 8.02 (d, J=7.4Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 5.33(br d, J = 1.6 Hz, 1H), 2.42-2.52 (m, 1H), 2.17-2.28 (m, 3H),2.01 (dd, J = 16.0, 12.0 Hz, 1H), 1.55 (s, 3H), 1.51-1.90 (m,13H), 1.37 (s, 3H), 1.09 (s, 3H). ¹³C NMR: 213.20, 183.17, 166.07, 132.99, 130.56, 129.59, 128.50, 72.88, 53.16, 52.32, 47.21, 45.20, 44.76, 42.56, 39.77, 38.83, 36.60, 35.99, 35.15, 34.01, 23.76, 21.59, 19.68, 19.36, 17.97. HRMS (CI) Calcd for $C_{27}H_{35}O_5 (M + H)^+$: 439.2485. Found: 439.2478.

Acknowledgment. This work was supported in part by PHS grant CA-39976 and by NSF Instrumentation Grant CHE-9121109. O.B.W. expresses his gratitude for receipt of a Samuel K. Bushnell and a Dox Fellowship. The X-ray analysis was conducted by Susan deGala, The Yale Chemical Instrumentation Center (YCIC), Sterling Chemistry Laboratory, to whom we are indebted. We are most grateful to Professor T. Hayashi (Toyama University, Japan) for NMR spectra of the natural products and a sample of SDB and to Professor M. Ahmed (University of Dhaka, Bangladesh) for the ¹H NMR spectrum of dulcinol.

Supplementary Material Available: Copies of the ¹H NMR spectra of compounds 1, 2a, 2b, 32b, 32c, 33b, 33c, which are lacking combustion analyses, and comparison ¹H NMR spectra of 2a (natural vs synthetic) (8 pages). This material is contained in libraries on microfiche, immediately following this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead for ordering information.

JO950249C